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Abstract: An air-silica microstructure optical fiber based on the anti-resonant reflecting optical 
waveguide (ARROW) principle was used to develop a spectral absorption gas sensor. The ARROW 
fiber has an air core and an air cladding layer. An ARROW fiber with a length of 725 mm was used to 
construct a sensing system to detect acetylene gas. The gas was injected into the fiber from one end 
of the fiber. The transmission spectra were collected using an optical spectrum analyzer. The results 
indicate that the system can detect the gas of different concentrations and has the good system 
linearity. The response time of the system is about 200 s. 
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1. Introduction 

Some microstructure optical fibers, such as 
hollow-core fibers, hollow-core photonic crystal 
fibers, have been used to develop new gas sensors of 

the spectral absorption type, in which the 
microstructure optical fibers are used as a new kind 
of gas chambers [1–3]. Compared to the 

conventional spectral absorption gas chambers, such 
microstructure optical fiber-based gas chambers 
remove the optical collimators, the high reflection 

mirrors, the focusing lens, etc., which is helpful to 
miniaturize the sensing system and to reduce the 
sensing noises. The optical fiber based on the 

anti-resonant reflecting optical waveguide (ARROW) 

principle is a kind of microstructure optical fibers, in 
which a Fabry-Perot cavity-like cladding layer is 

used to limit the light transmitting along the axial 
direction [4]. In this paper, an ARROW fiber was 
used to construct a sensing system to detect 

acetylene gas (C2H2). In this system, the C2H2 gas 
was injected into the fiber from one end of the fiber, 
and the transmission spectra were collected using an 

optical spectrum analyzer. The linearity of the 
system was calculated, and the response time was 
measured. 

2. Experiment 

The air-silica ARROW fiber was made by 
Yangtze Optical Fiber and Cable Company Ltd., 
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China. The structure of the ARROW fiber is shown 
in Fig. 1. The fiber had an air fiber core and an air 
cladding layer. The diameter of the air core was 
18μm, and that of the air cladding was 43 μm. The 

experimental setup is shown in Fig. 2. The length of 
the ARROW fiber was 725 mm. The ARROW fiber 
was coupled with multimode optical fibers using 

specially made flange plates. The end face intervals 
between the ARROW fiber and the multimode fibers 
were 100 μm. The gas to be detected would flow 

into the fiber from one end of the ARROW fiber. On 
each of the flange plates, there was a blowhole of  
1 mm. The coupling flange plates were placed inside 

two miniature air chambers. The transmission 
spectra were collected using an optical spectrum 
analyzer (Yokogawa AQ6370B) with a stable wide 

bandwidth light source with the wavelength ranging 
from 1480 nm to 1580 nm. The stable bandwidth of 
the light source could cover the absorption area of 

C2H2 in the near infrared region. The resolution of 
the optical analyzer was set to the highest precision, 
i.e. 0.02 nm, and the sensitivity was set to High 2. 

High purity C2H2 was injected into the gas chamber 
by using a syringe of 5 ml to create different C2H2 
concentrations. 5 ml C2H2 was injected into the air 

chamber each time. After the 7th injection, totally 
35 ml C2H2 was injected. The data were recorded 10 

min later after each injection. 

 
Fig. 1 SEM (scanning electron microscope) image of the 

ARROW fiber. 

 

Light source 
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Miniature air 
chamber 
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chamber 
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Fig. 2 Schematic diagram of the experimental setup. 

3. Results 

All the measured absorption spectra are shown 

in Fig. 3. There are two absorption areas from  

1510 nm to 1540 nm, which is in accordance with the 

standard absorption spectrum of C2H2 in the 

HITRAN database. On the measured absorption 

spectra, the absorption peaks can be clearly revealed. 

The absorption peaks near 1520 nm are shown in  

Fig. 4. The baseline of the absorption was obtained 

by least-square smoothing curve processing, and the 

absorption curve was processed by Gaussian linear 

fitting [5]. 
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Fig. 3 Absorption spectra of C2H2. 
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Fig. 4 Data demodulation and fitting. 

Through the baseline calculating and Gaussian 

linear fitting, the C2H2 absorption spectra of 

different concentrations in Fig. 5(a) were changed to 

the curves in Fig. 5(b). After the linear fitting, some 

weak absorption peaks were ignored. As shown in 

Fig. 5(c), the strongest absorption peak is near   
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Fig. 5 Absorption curves and Gaussian linear fitting:      
(a) multimodal data, (b) multi-peak Gaussian fitting,         
(c) unimodal data, and (d) single-peak Gaussian fitting. 

1520 nm and had an absorption intensity of 4.5 dB 

after the 7th injection. The absorption intensity 

change is shown in Fig. 6, corresponding to the data 

at 1520.05 nm shown in Fig. 5(c), which shows the 

good system linearity. From the Beer-Lambert’s 

absorption law, the gas concentration is proportional 

to the absorbance ratio. This result indicates that this 

ARROW fiber-based sensing system can detect 

C2H2 of different concentrations. 
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Fig. 6 Absorption intensity change. 

High purity N2 was aerated into the system for 

an hour to clean the system, and then 20 ml of high 

purity C2H2 was injected into the gas chamber. The 

data of the peak at 1520 nm were recorded. As 

shown in Fig. 7, the response time of the system was 

about 200 s. Considering that the length of the 

ARROW fiber was 725 mm, this response speed was 

rather high. 
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Fig. 7 Absorption time curve. 

4. Conclusions 

The ARROW fiber, with an air fiber core and an 
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air cladding layer, has a large gas flow area, which 
makes it suitable to be used in the optical fiber gas 
sensor. The experimental results indicate that the 
system can detect acetylene gas of different 
concentrations and has the good system linearity. 
Considering that the length of the ARROW fiber is 
725 mm, the response time, about 200 s, is relatively 
short. This experiment illustrates that the ARROW 
fiber is a promising microstructure optical fiber for 
the novel sensor development. 
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